
VUIMS:
A Visual User Interface Management System

Jon H. Pittman, Director of System Architecture
Christopher J. Kitrick, Senior Graphics Programmer

Wavefront Technologies, Inc.
530 E. Montecito St.

Santa Barbara, CA 93 103
(805) 962-8117

wavetio!jon@hub.ucsb.edu
wavefio!chrisk@ hubucsbedu

Abstract

VUIMS is an object-oriented user interface management
system that was designed to support reconfigurable
components. VUIMS consists of a collection of objects and
a semantically rich token language. The objects implement
primitive presentation and interaction functions. The token
language controls interaction and visual style. High level
objects can be created from primitive objects using token
templates. The user interface and application are controlled
by token streams that are emitted in response to user
actions.

VUIMS supports a variety of presentation and interaction
styles through simple, robust manipulation of a hierarchy
of visual panels with a rich set of relationships and
constraints.

VUIMS has been used to implement two commercial high-
performance computer graphics applications and an on-line
help system. It has evolved over a three-year period and has
proven to be an effective tool in commercial use.

Introduction

Rising expectations of usability and the increasing
complexity of software make the design, development, and
support of interactive graphics software difficult. In
particular, creating usable human interfaces remains an

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Asociation for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-4104/90/0010/0036 $1.50 36

intractable problem. User Interface Management Systems
(UIMS) and user interface toolkits address this problem by
providing standard user interface components and a system
for their composition.

Effective user interface technology must support the
interface designer and the design process. It must encourage
prototyping, alternative generation, and progressive
refinement of design solutions. It must also allow the
designer to work easily at both the overall and detail levels.
In effect, user interface technology must allow the designer
to fluidly manipulate and shape the interface over time to
converge on a design solution.

This paper describes the Visualizer User Interface
Management System (VUIMS) - a UIMS which supports
the iterative design and construction of high-performance
interactive graphics applications. VUIMS allows the
construction of standard user interface components from
primitive objects. These components form a visual
vocabulary that can be combined in a number of ways to
form user interfaces for graphic applications. VUIMS
differs from other UIMS and toolkits in that it is
independent of a particular presentation and interaction
style. Components are configured through an interpreted
token language to implement a variety of user interface
styles and behaviors. This token language implements
application actions in adclition to interface actions.

This paper describes the internal structure, use, and
implementation of VUIMS. It includes the following
information: an overview of the system, a discussion of
related work, the VUIMS architecture, an example object
configuration, a description of the VUIMS kernel, a
description of VUIMS objects, a description of the token
language, a discussion on implementation and evolution of
VUIMS, and conclusions and future plans.

Overview

VUIMS achieves the following goals:

l separation of application from user
interface -- The application modules do not
know anything about the user interface driving
them. Interface development and prototyping can
take place separately from the application
development.

. user control -- The user interface monitors and
responds to user behavior and asks the application
modules to perform user-requested tasks.
Application modules are subservient to the user
interface which is, in turn, subservient to the user.

l extensibility -- Theuserinterfacecanbe
modified or extended without major disruption to
the user interface software or the application
modules.

l external syntax and semantics -- The visual
style of the user interface, as well as the behavior
invoked by user actions, are not embodied in the
user interface software. They are embodied in
tokens that are stored in a dam file external to the
executable. This allows syntax and semantics to
be changed without recompiling the software.

Product architecture. VUIMS is part of an overall
architecture for a family of interactive computer graphics,
animation, and visualization software products. This
architecture is shown in the figure below.

.

>

user

r graphic device layer

L Vhualhsr ProdUd

Visualization product architecture

In the visualization product architecture, VUIMS is one of a
set of software layers. Each layer has a specific,
independent function described as follows:

l graphic device layer -- manages the input
and display devices and abstracts hardware-specific
implementation details from the user interface.

l VUIMS -- is responsible for presenting
graphics and user interface controls to the user and
translating user actions embodied as input events
into work requests for application modules.

l application modules --respond to work
requests from the VUIMS and perform the specific
work that the user requests. A given product may
have several application modules.

l data management layer -- reads and writes
application data to the file system and coordinates
data access between application modules.

As shown in the preceding architectural diagram, VUIMS
communicates with the user through an abstract graphics
layer, This Iayer is responsible for presenting ail visual
elements that the user sees on the screen and for translating
all user input events into meaningful work requests for
application modules.

Related Work

The inspiration for VUIMS came from two bodies of related
work: UIMS research and object-oriented programming.
VUIMS was also influenced by our desire to create a
portable, extensible, user interface layer for our products
that could be customized for specific user classes and
international locales.

VUIMS has drawn from several threads in user interface
research. It is not a pure model of any particular UIMS
approach or object-oriented programming paradigm, but
rather combines a number of good ideas into an object-
oriented UIMS that is appropriate for developing
commercial products.

User Interface Management Systems. UIMS
research has been concerned with developing a layer of
software to handle user interaction separately from the
application IpFAFSS]. UIMS software typically provides a
set of standard components and some form of external
description. A user interface designer builds these
components using the external description. The UIMS then
reads this description and generates the user interface for the
application. Two difficulties encountered with UIMS are a
fixed design vocabulary and a limited ability to control the
application because of a split between the user interface and
the application.

37

VUIMS overcomes both of these problems. The first
problem is addressed by supporting multiple levels of
configuration. The second is addressed by having the token
language drive both the interface and the application
modules.

Two areas of current interest in UIMS research are
developing interactive design tools [MYER89, SING881
and measuring user interaction [OLSE88]. VUIMS
currently provides minimal support for interactive design
tools and no support for measuring user interaction. We
plan to strengthen these areas in the future.

Object-oriented programming. Object-oriented
programming techniques have been viewed as particularly
appropriate for graphic user interface3 [SCHM86, COXSS]
and for overcoming some of the problems of standard UIMS
[KNOL89]. In addition, UIMS have been implemented
using objet t-oriented techniques [SIBE86]. VUIMS
implements basic object-oriented programming concepts
such as classes, instances, data encapsulation, and message
passing, in the spirit of Smalltalk- [GOLD89].

The Interviews C-+-t user interface toolkit lJINT89]
demonstrates many of the concepts of hierarchical object
composition that are embodied in VUIMS.

Further sources of inspiration were a multi-process paint
system [BEAC82] and a multi-process user interface
UANN863 in which user interfaces were composed of
networks of small processes, each focused on a specific
task. Although VUIMS is implemented as one single-
threaded process, it is organized into discrete objects to
simulate multiple threads of control and concurrency.

VUIMS Architecture

Structure and components. VUIMS consists of a
hierarchical collection of o b je c ts. Objects may be
physical, in that they have a visual manifestation on the
display device, or logical, in that they provide services to
other objects or manage relationships between objects.
Each object contains internal state data and methods that
transform the object’s state or its visual representation.

Objects communicate with each other by sending messages
embodied in tokens. Tokens are character strings that are
interpreted by objects to invoke methods. These methods
modify the state of the object to which they belong. In
effect, tokens are asynchronous messages that objects use to
communicate with each other.

Tokens may contain sy m b o Is which refer to the internal
state of objects. Physical objects manifest themselves on
the display device through a hierarchical collection of
pa ne Is. Panels are rectangular regions of the screen that
are implicitly connected to physical objects. When a
physical object receives a request to display itself, it
notifies the panels associated with it by sending a message
to the display object. The display object manages the
entire panel hierarchy. When the display object receives a
request to display a panel, it also manages damage to nearby
regions caused by the panel redraw.

The architectural diagram that follows shows the internal
structure and the major components of the VUIMS.

Structure of VUIMS

When an external event is caused by a user action, such as
clicking the mouse or typing on the keyboard, an object
handles the input eve& The object normally requests that
a token packet be dispatched in response to the event..
The token packet is a stream of tokens that are sent to other
objects (to indicate a visible change in state, for example)
or the application object for application actions. Token
packets are managed by a token object which requests
them from a resource manager that stores them as
generic data packages iu a resource file. The actual routing
of tokens and management of the object hienuchy is done
by an object called the dispatcher. The object and token
management services are gathered into a subsystem called
the kernel.

Note that the application modules are treated as objects
by VUIMS. They receive tokens and respond to them like
any other VUIMS objects. The only difference is that they
have no knowledge of other objects and cannot directly
interact with them.

3s

Configuration layers. Interface style and application
control are embodied in tokens. Since the tokens are
interpreted rather than compiled, they can be manipulated
interactively without a recompile. To make the token
mechanism more powerful, token templates are used.
Token templates are sets of tokens that specify both visual
style and object behavior. They are executed to establish
initial object configuration. An entirely new style can be
implemented by modifying the underlying token templates.

product as see”
by the user

User Interface is layered to allow multiple
levels of product configuration

As the preceding drawing illustrates, VUIMS can be viewed
in layers. As one moves in from the surface, the layers
become increasingly generic. The kernel is a generic set of
mechanisms used in every product. The outer layer is
product-specific. The following layers are shown:

l Token packets glue the lower, mom generic
elements together to form products. They embody
the presentation and interaction that the user
experiences. Token packets are product-specific
and invoke application actions.

l Token templates implement collections of
generic objects and functionality. They define
composite objects and specify actions. They
embody a specific interface style. Token templates
are generic to a specific style of user interface but
independent of a particular product.

l Interface objects are simple, generic interaction
and presentation primitives. They are
implemented in C code and have well formed and
bounded behaviors. They are the primitive
elements from which all user interfaces are built.

l The kernel consists of the dispatcher, the token
object, and the resource manager. It orchestrates
the activity of the objects and the token templates
and packets. The kernel is completely independent
of all applications and higher level interface
constructs.

Configuration process. In the following sections, we
will examine each of the major subsystems of the VUIMS
in detail. Before we do that, let’s look at the process of
assembling a product using VUIMS.

genetic
infrastrucme 4

pfeciuct-specific
L configuration

Generic components are assembled to form
a specific product

As products are built using VUIMS, the product developers
take generic components and assemble them with increasing
levels of specificity to form the final product. The product
developer is primarily concerned with configuring a
specific product from generic components. Thus, he or she
works to integrate high-level chunks of functionality as
embodied in token templates and application modules. The
developer configures the product by writing token packets
that embody interface layout, application actions, and
interface behavior.

Templates and application modules are typically produced
by someone other than the product developer. Thus, the
product developer is really the consumer of components
produced by others. This distinction is further reinforced by
the fact that product assembly typically does not require
programming skills, while production of the base
components is a programming activity.

Example

A simple example illustrates the composition of generic
objects to form a complex object. Following, a simple
dialog box is constructed from a hierarchy of VUIMS
objects. Each button in the dialog box, including the
depressed button, is a hierarchy of smaller objects. The
generic objects in this example are the button, static text,
and the polygon array.

39

Example dialog box built from VUIMS
objects

Each visual region is described by an enclosing rectangle.
A rectangle is the display portion of a panel. A panel is a
sub-object of the display object. Panels can be combined in
hierarchical order to produce a 3D effect. Panels can also be
connected to objects so that when it is time to fill a panel’s
bounding rectangle, its associated object is notified to
update the region. A panel without an object can only have
a color attribute. Thus, the shadows, borders, and frames
have no objects associated with them.

The object and panel hierarchies are illustrated in the
following two diagrams. The two trees are disjointed but
related since panels are associated with objects. It is
possible to modify the object hierarchy without affecting
the display tree.

Dialog box object hierarchy

In the display hierarchy, child panels can he either behind or
in front of the parent, (e.g. shadow and light bars). Panels
such as I, J, F, and E can be made transparent to mouse
events so that a selection of button C is not intercepted by
the intervening panels.

Dialog box display hierarchy

The display object tracks state changes of the mouse such
as position and button actions. It then notifies the object
associated with a panel if the state change is relevant to it.
There is a root panel which is the parent of all other panels.
For dialog boxes, the root is temporarily defined as a very
small subset of the display tree, in this case, “dig.” Activity
outside of this group is then undefined. The dialog box
example illustrates the use of hierarchy to control
appearance as weIl as input flow.

The VUIMS Kernel

The kernel is a suite of basic services that controls object
creation, deletion, position in the tree, message storage and
recovery, symbol translation, panel creation, message
delivery, and input focus. These services comprise the
infrastructure upon which the objects embodying VUIMS
functionality are built. The elements of the kernel are
themselves embodied in and controlled through objects.
The folbwing objects comprise the kernel:

The dispatcher creates and deletes objects and
maintains their hierarchy. It also translates
symbols and delivers messages.

The display object is the graphic counterpart of
the dispatcher. It maintains the hierarchy of
visible panels on the screen. It also orchestrates
the flow of actual input devices such as the mouse
and keyboard.

The resource manager allows essentially
random access to blocks of dam stored in a file.
Every object can store its state as a resource. The
resource manager controls all access to the data
stored; it has no knowledge of the resource
contents.

40

. The token object is the object that manages the
creation and distribution of token packets. The
token object uses the resource manager to save and
restore token packets in a resource file.

These objects comprise the backbone of VUIMS. They
coordinate object management and the flow of
communications in the form of token streams between
objects. The remaining functionality of VUIMS is
embodied in individual objects working together through
the infmstructure provided by the kernel.

Objects

An object is an encapsulated set of data and functions that
operate on that data. Access to objects is directly through
a set of functions caIled only by the dispatcher.
Communication between objects occurs through messages
that invoke methods unique to each object class as well as
those common to all objects.

Object access functions. Each object is uniquely
identified by a handle. The handle for each object points
to data private to the object and a table of object access
function pointers. These functions are called by the
dispatcher in response to various events occurring in
VUIMS. VUIMS passes the object handle to each routine
so that the routine can access the object’s private data. The
following object access functions may be available for an
object. The in it function is required to create an object
instance. All other functions are optional.

l init

9 exit
l display
l action
l signal
. input
l output
9 error
l save

l restore

-- allocates memory to hold state
information and initialize
function pointers

-- releases object’s memory
-- draws the object on the display
-- processes messages sent to the object
-- handles asynchronous interrupts
-- requests input from the object
-- sends output strings to the object
-- sends an error message to the object
-- saves object state in the current

resource file
-- recovers object state from the current

resource file

The following figure illustrates the components of an
object. The function table is owned by the object and only
accessible from the dispatcher. private data is allocated and
maintained by the object and some of it may be accessible
through the symbol table provided. The command table is
used to parse messages which arrive from the dispatcher.

These messages invoke method routines in response to the
message contents.

handle

Anatomy of an object

Object types. There are four Q&S of objects: built-in,
class, instance, and pseudo. These types are defined as
follows:

l Built-in objects are one-of- a-kind, typically
providing some central service. For example, the
color object allows interface color tables to be
defmed, edited, saved, and restored as resources by
the interface designer at any time. The following
built-in objects are provided with VUIMS:

*my - manipnlates array data
remet

* color - interface color control
* condition - error trapping
* cursor - cursor shape and visibility

control .
* device - frame buffer control and access
* dispatcher - token / input flow control
* display - panel manager
* file - file access
*if - logical if manager
* interrupt - physical device (keyboard,

mouse) handler (joumaler)
* null - bit bucket
*parset - language
* program_sym - program symbol access
* Program - program access
*readea - script file reader
*- - resource file control
* signal - handle UNIX signals
* switch - logical switch manager
* token - token builder/emitter

41

. Class objects are templates used to create
instance objects. They do not maintain any state
information. Thus, they can be instanced any
number of times. The following class objects are
used to construct interfaces:

* button
* color-picker
* debll~kbd
* edit-text
* graphic
* keytmp
* list

* listport
* meter
* scroll
* static-text
* symbol
* textfilter
* viewport

- visual base button
- visual color display/selection
- &bug keyboard
- visual mouse-editable text
- visual text/polygon display
- specific keyboard key trapper
- information list handler

(multi-column/non-graphic)
- visual list handler
- visual meter for scalar data
- visual scroll bar
- visual static text
- symbol table
- context-sensitive text filter
- visual display list port

l Instance objects are incarnations of a particular
class definition. The dispatcher holds the state of
an object which is passed to the class whenever it
is invoked.

. Pseudo objects are pointers to other objects.
By default, three pseudo objects are created: input,
output, and error. At any time, a pseudo object
can be pointed to another object. Whenever a
pseudo object is referenced, it is redirected to the
actual object to which it points. The following
pseudo objects are used to route events:

* input - pointer to object to handle input
* output - pointer to object to handle output
*enor - pointer to object to handle errors

Message parsing. All messages arrive at an object from
the dispatcher as tokens and arc parsed by the object’s
action function. This function parses the message by
passing it and a pointer to the object’s command table to a
library routine which finds the appropriate table entry and
executes the corresponding method function. Messages
perform one basic purpose: they alter the state of an object.

Symbol table. Objects contain a symbol table that holds
both user-defined and intrinsic symbols. The dispatcher
uses this symbol table when translating symbols embedded
in tokens. Intrinsic symbols are automatically created by
the object to reflect object state. They generally allow

messages to use the data associated with the object’s state.
For example, in a dialog where the user is expected to type
in a string and verify acceptance, the edit text object
contains a symbol that indicates the number of characters in
the edit buffer. This symbol can be used to determine
whether verification is a valid choice.

Display. If an object has a visual component, it must be
associated with a panel in the display tree. That panel
determines back to front order, position, and size. When the
panel is drawn, the object is asked to draw its contents in a
rectangular region that is passed to the object’s display
routine.

The Token Language

Tokens are the delivery vehicle for messages. A token
consists of the following parts:

l source - object that sent the message (implicitly
maintained by the dispatcher)

l target - object for whom the message is intended
l priority - order of delivery
l message - a string that is parsed by the target

object to invoke a method

Messages alter the object state and may contain symbols
that refer to state data belonging to the source object or any
other object.

S y m b o 1 s. Symbols are references to object data and are
thus object-specific. They are used in messages to allow
actual content to be substituted at the time the message is
delivered. Symbols make it possible for objects to share
knowledge of their state so that multiple objects can work
together. Thus, object functionality can be kept small and
generic. Small objects can then be combined to form
complex composite objects. Symbols are differentiated
from other words in the message string by a leading Y$”
character, followed by the object path and the name.

$/a/b/c/d - path /a/b/ : object c : name d

The object path reflects the position of the object in the
dispatcher’s object tree. Symbol definitions have an
implied path equal to the path of the source object of the
message. A path can move back up the tree with the ‘Y”
character. For example, if object b was the source of the
previous message, the alternative reference would be:

$c/d - (path la/b/) : object c : datum d

42

Priority. Each token has a delivery priority. The
priority indicates the order in which the token is deliyered
relative to other tokens. A token may have one of the
following priorities: .

l immediate - bypass tokens awaiting execution
and deliver synchronously

l interrupt - deliver before other tokens
l normal - deliver in sequence sent
l defer - deliver after other tokens

Token packets are coherent groups of tokens that are
sent en masse. They have unique names and are maintained
by the token object. All objects that can send messages in
response to an external user event, such as a mouse down,
maintain the name of the token packet associated with that
event. When the object receives an event and wishes to
emit its associated token packet, it issues a request to the
token object. The token object then emits the packet by
delivering each token in the packet to the dispatcher. The
dispatcher then distributes the tokens to their respective
targets.

The following example packet is issued from the selection
of an item in a pop-up menu. The initial button that
brings up the pop-up contains the value of the current
setting. Each token has normal priority. The sender of the
token packet is the surface button.

target message

display color $fullname $/color/fil-on
display color !Gcurrent $/color/fil
Program mode $text
$Udlname define current $fullname
Nullname text $text

The tokens above perform the these actions in the
following example pop-up menu:

l change color of self to selected color
l change color of last selected to neutral
l inform program of current mode
l define new current definition in parent
l define new default text to be seen

Current Selection

pq

Point
.,, ,_.,, :. .,. :.
;j: jjii;i; j Line :i_l:;I y_ :

. . . .: : .,::. : ::::::..:. .:: ., ._\..,,.

~

Polygon
::j:: :.... .._..._........L...... -iliiiiili
@Surface ;gj
:::::::::::j:::::::::::::::::::::::::::::::::::::::~:

Current

New

Example token packet Is emitted by the
surface button on this pop-up menu.

Direct Manipulation. Wb originally allowed
applications to directly inquire input values from the mouse
to handle direct manipulation of graphic elements. We
found, however, that token performance was sufficient to
allow all direct manipulation to occur through token
processing. Now, even the smallest interaction is handled
through token processing. This frees the application from
having to know specifics about the input device. And
makes it much easier for the developer to control
interaction.

Performance. In all interaction, token processing time is
negligible. The amount of time necessary to process a
token is fairly low, even with complex tokens. We profiled
performance-critical loops where a great deal of graphics
activity is occuring (moving shaded objects in real time in
perspective, updating screen values, and swapping display
buffers for smooth motion) and found that the overall cost
of message parsing was lo- 12%. That consisted of
numerous smaller components in the 1.5% or less range.
The large time components for graphic interaction occurred
in the actual graphics display code.

Tokens are the controlling mechanism for VUIMS. They
define and control all of the activity generated by user
actions. They carry messages between objects and to the
application modules. Thus, the process of configuring a
product-specific user interface using VUIMS is really a
process of programming using the token language.

lmplementatlon and Evolution

The VUIMS components (kernel services and objects) are
implemented in C on the UNIX operating system. They
are designed to be portable and have been ported to a
number of graphics workstations. The graphics device layer
insulates the VUIMS fi-om the details of the particular

43

hardware graphics implementation. The token templates
and token packets are independent of the operating
environment.

Original implementation. VUIMS was developed
over a period of three years to support a family of high-
performance graphics applications. It is now in its second
generation. The original version was used to implement a
graphics product called the Wavefront Personal Visualizers
CpITT891 (see attached slides). The original version
included the following concepts:

l strict separation of application and interface
9 presentation and interaction embodied in a

collection of objects
l a dispatcher to control token traffic and object

instancing
. symbols to supply object semantic information to

tokens

In implementing the Personal Visualizer, we found several
problems with the original version of the VUIMS:

l object granularity -- The objects we provided
directly embodied too much interface style and
behavior. Thus, they were unwieldy and limited.

l configuration complexity -- The process of
configuration was difficult. Because there was no
hierarchy of configuration operations or support
for token language modularity, it was a laborious
hand-crafted process.

l object and display hierarchy -- Built-in
mechanisms to manage an object and display
hierarchy did not exist,

. token flow -- Mechanisms to control and
sequence tokens were insufficient.

l semantics --The symbol mechanism was not
rich enough to provide implicit access to object
state.

. token management -- Token packets were
stored in text files and read on system startup. This
led to a long delay on system invocation.

. programming consistency -- As the first
version of VUIMS evolved over a period of time
and was worked on by several developers, various
aspects of the system grew inconsistent. In
particular, each object was implemented differently.
The product designers and implementors had to

understand the quirks and personality of each
object.

Second generation. Tt) overcome these shortcomings,
we fewrote the VUIMS to incorporate a number of new
features and innovations. These innovations included:

l resource management
l a sophisticated object and display hierarchy
l an extended symbol system
l later binding of symbols
. improved token flow control mechanisms
l smaller, more compact, generic objects
l token templates
l interactive configuration aids
l elimination of direct control of the mouse by the

application

The second generation of VUIMS was used to develop a
new version of the Wavefront Personal VisualizerTM and a
new scientific visualization package called the Data
Visualizers. In addition, we were able to develop an online
help system using the second generation VUIMS that was
primarily user interface. This help mechanism required very
little application code to support it.

The second generation was built on the foundation created
by the first version. We learned from our implementation
experiences that the difficulties encountered with our initial
‘version were failures of timidity rather than failures of
boldness. The second generation of VUIMS took the
original design much further and resulted in a much more
successful implementation. In addition, the flexibility of
the second generation allowed us to create a more modem
visual style.

Conclusion and Future Development

VUIMS has enabled us to successfully build a set of
commercial applications with rich, effective user interfaces.
As we have developed our applications, VUIMS has
supported the prototyping and iterative design necessary to
create compelling graphic products. In addition, it has
allowed us to experiment with several different user
interface styles.

We have developed a library of user interface objects for use
in future applications. By providing a proven, reliable set of
user interface components that can be reconfigured with
minimal effort, we hope to reduce user interface
development time and increase the user interface quality in
our products. VUIMS has changed our software
development process from that of handcrafting software to

one of assembling products from a set of known
components. We believe that VUIMS provides a model
that can be used to improve software product development
and productivity.

We plan to expand and enhance the capabilities of VUIMS .
There are several areas of future development planned for
VUIMS:

l multi-process model -- Currently, VUIMS and
its application modules are implemented as one
monolithic process. We plan to migrate it to a
multi-process model in which VUIMS acts as a
user interface server for a number of client
application processes. Eventually, we hope to
further decompose VUIMS into a multi-process
architecture similar to the architectures proposed
by Beach [BEAC82] and Tanner [TANN86].

l interactive configuration tools -- One of
the most powerful notions behind VUIMS is the
ability for non-programmers to build products.
Currently, the methods for configuring products are
still somewhat cumbersome and complex. We plan
to make this process easier by providing graphic
constraint-based tools similar to Prototyperm by
Smethers-Barnes [SMET89], the NeXT user
interface builder lTHAK90], and those described in
the research community.

l multiple interface styles -- Although we
have isolated visual style issues to the token
templates, we have not experimented with a wide
range of styles. We would like to try to emulate
several popular interface styles such as MotifTM
and GpenLooknyl to see how truly ma&able our
system is.

. mixed control --We wish to experiment with
allowing the application to participate in
controlhng the interaction in certain cases, such as
steering a large scientific visualization application.

l support for more visual data types -
Currently, we support standard menu and icon-
based user interfaces. In the future we plan to offer
more visual representations for data. This includes
more pictorial icons and visual representations of
animation sequences and components.

l international support -- We plan to provide
support to allow customization for multiple
international locales.

We plan to keep developing and enhancing VUIMS and
continue using it in commercial graphics and animation
applications. We anticipate that additional implementation
experiences will provide us with new opportunities and
challenges in making VCJIMS a truly useful and effective
tool to support high quality user interfaces.

Acknowledgements

The authors would like to thank Wavefront Technologies,
Inc. for its support of the work presented in this paper.
VUIMS was developed for Wavefiont’s Personal
VisualizerTM product line.

Deny Frost was the product designer for the Personal
VisualizerrM and was very influential on the external design
of the user interface. Julie Daily and Susan Papallardo
configured products using the VUIMS . Their efforts made
the VUIMS successful. In addition, Julie’s comments and
experience proved invaluable in evolving the VUIMS
architecture. Trish Soriano provided programming support.
Kim Shelley was involved in the early stages of the project
and built several of the early objects for VUIMS. Finally,
Roy Hall, Dave Immel, and Matt Arrott provided valuable
design input and guidance in the early stages of the project.

The Data Visualizerm was developed by Don Brittain, Josh
Aller, and Brad Weed. Brad also developed the on line help
mechanism with VUIMS.

Diane Ramey and Karen Gadway provided editorial
assistance in writing this paper.

References

[BEAC82]

[COX86]

[GOLD891

Richard J. Beach, John C. Beatty, Kellog
S. Booth, Darlene A. Plebon. Eugene L.
Fiume. The Message is the Medium:
Multiprocess Structuring of an Interactive
Paint Program. Computer Graphics
(Siggraph ‘82) Volume 16, Number 3.
July 1982.

Brad J. Cox. Object-Oriented
Programming, An Evolutionary
Approach. Addison-Wesley. 1986.

Adele Goldberg and David Robson.
Smalltalk-80, The Language. Addison-
Wesley. 1989.

45

moLm

[MYER89]

[OLSE88]

m’IT891

[PFAF85]

[SCHM86]

[SIBE86]

Nancy T. Knolle. Why Object-Oriented
User Interface Toolkits are Better.
Journal of Object-Oriented
Programming. November/December
1989. Pg. 63-67.

Mark A. Linton, John M. Vlissides, and
Paul R. Calder. Composing User
Interfaces with InterViews. IEEE
Computer. February 1989. Pg. 8-22.

Brad A. Myers, Brad Vander Zanden,
Roger B. Dannenberg. Creating Graphical
Interactive Application Objects by
Demonstration. Proceedings ofthe
ACM Siggraph Symposium on User
Intelface Software and Te,chnology
(UIST ‘89). Nov. 13-15, 1989. Pg. 95-
104.

Dan R. Olsen, Jr. and Bradley W.
Halversen. User Interface Measurements
in a User Interface Management System.
Proceedings of the ACM Siggraph
Symposium on User Intelface Sofhuare.
October 17-19, 1988. Pg. 102-108.

Jon H. Pittman. The Render Button:
How a high-end graphics company
developed a personal graphics product.
Monterey Computer Graphics Workshop
Proceed2ng.s. Usenix Association.
November 1989. Pg. 99-113.

Gunther E. Pfaff, Ed. User-Interface
Management Systems. Springer-Verlag.
1985.

Kurt J. Schmucker. Object-Oriented
Programming for the Macintosh. Hayden
Books. 1986.

John L. Sibert, William D. Hurley,
Teresa W. Bleser. An Object-Oriented
User Interface Management System.
Computer Graphics {Siggraph ‘86).
Volume 20, Number 4. August 1986.
Pg. 259-268.

[SING881 Gurminder Singh and Mark Green.
Designing the Interface Designer’s
Interface. Proceedings of the ACM
Siggraph Symposium on User Interface
Software. October 17-19, 1988. Pg. 109-
116.

[SMET89] Smethers-Barnes. PrototyperwManual.
Smethers-Barnes. 1989. Portland,
Oregon.

rANN86] Peter P. Tanner, Stephen A. Ma&ay,
Darlene A. Stewart, and Marceli Wein. A
MultiTasking Switchboard Approach to
User Interface Management. Computer
Graphics (Siggraph ‘86). Volume 20,
Number 4. August 1986. Pg. 241-248.

[THAK90] Umesh Thakkar, Gary Perlman, and Dave
Miller. Evaluation of the NeXT Interface
Builder for Prototyping a Smart
Telephone. SIGCHI Bulletin. Volume 21,
Number 3. January 1990. Pg. 80-85.

46

